
Predicting the fidelity of Quantum Circuits

Diogo Valada
diogovalada@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

October 2020

Abstract

The endeavor to build a working quantum computer is highly interdisciplinary in nature, requiring
a complex software-hardware stack. In particular, given the hardware-agnostic properties of common
quantum algorithms, a compiler is required to transform those algorithms into code runnable by the
specific quantum devices. Such compilers need to take into account the architectural constraints of the
said devices, such as the fact that quantum devices do not commonly offer all-to-all connectivity. This
results oftentimes on gate number and circuit depth overhead. This can become problematic, since in
the current NISQ (Noisy Intermediate-Scale Quantum) era, quantum devices are characterized by high
error rates and reduced number of qubits, making quantum error correction techniques unpractical: this
requires the compilation procedure to be as efficient as possible. In this work, we approach the qubit
mapping problem of compilation, where the software’s virtual qubits are assigned to the device’s physical
qubits: in order to leverage the power of the existing mapping algorithms, both existing and new metrics
are developed and tested in this work. Among these, we propose a deep learning-based metric that is
able to outperform all the previously proposed ones for some types of mapping algorithms. Keywords:
Quantum computing; Qubit Mapping; Mapping metrics; Fidelity prediction; Deep Learning.

1. Introduction

Great strides have been made in developing a
functional quantum computer, with several possi-
ble implementation technologies in development.
However, all of the technologies still only support
a small number of qubits, the basic unit of quan-
tum information, meaning that only small programs
can be executed. Furthermore, most implementa-
tions are plagued by short decoherence times (in-
troducing low success rates for long circuits) and
imperfect quantum operations (making circuits with
many gates more prone to error). The main strat-
egy to solve the errors introduced by qubit deco-
herence and faulty operations is known as Quan-
tum Error Correction (QEC)[1], which proposes
encoding one logical qubit using several physi-
cal qubits. This solution is however out of range
for current devices, known as Noisy Intermediate-
Scale Quantum (NISQ) devices, due to the small
number of available qubits.

There exists a gap between quantum software
designed with the circuit model (the most common
quantum computation model) and quantum hard-
ware. One such factor creating this gap is the
fact that do not commonly exhibit all-to-all qubit
connectivity, which quantum programs tend to as-
sume. Such connections between pairs of qubits
are however necessary to perform two-qubit gates,

which are an important element of quantum com-
putation. In order to overcome this, it is necessary
to map the program’s virtual qubits to the hard-
ware’s physical qubits, and change them dynam-
ically throughout the computation, which typically
incurs in computation overhead in the form of ex-
tra gates and longer duration. It is however neces-
sary to minimize this overhead as much as possi-
ble, since it can lower the success probability of the
computation, defined as the likelihood of measur-
ing the correct outcome, due to the frailty of qubits
and faulty gates. This dilemma is known as the
Qubit Mapping problem, and is known to be NP-
complete[2]. Due to the complexity of this prob-
lem, smart algorithms are necessary in order to be
able to solve it. Additionally, due to the difficulty in
predicting the success probability of a circuit, good
metrics which correctly estimates or correlates with
this quantity are also necessary, in order to drive
the mapping algorithms to the best solutions. In
this work, we summarize the existing metrics used
to drive these algorithms, present a novel way to
compare them in a algorithm independent and un-
biased way. Additionally, we proposed novel met-
rics models, from which we highlight deep learning-
based models capable of not only correlating better
with the success probability than previous metrics,
but also accurately estimating it.

1

2. Background
Qubits. In Classical Information, the basic unit
of information is the bit, which has two possible
states, ’0’ and ’1’. In Quantum Information, on the
other hand, the basic unit is a quantum bit, or qubit,
which has two base states, commonly represented
as |0〉 and |1〉. The qubit can also be in a state
which is any linear combination of the two basis
states, a property called superposition. An arbi-
trary qubit state |ψ〉 is therefore represented (in a
specific basis) as |φ〉 = α |0〉+β |1〉, where α, β ∈ C
with |α|2 + |β|2 = 1. Multi-qubit states can be
constructed, and are represented by a 2n dimen-
sional vector, where n is the number of involved
qubits, namely |φ〉 = α0 |000...0〉 + α1 |000...1〉 +
... + α2n |111...1〉. If the multi-qubit state is non-
factorable in individual qubit states, it is said that
the state is entangled. The space of all qubit states
is, therefore, a Hilbert space. Quantum states are
acted upon using Quantum Operations, which are
split into three types:

State preparations. State preparations change
the state of the qubit into a known, useful one.
Usually, state preparations leave qubit in one of the
computational basis states.

Quantum Gates. Quantum gates are reversible,
non-destructive, unitary operations applied to
qubits. They change the qubit quantum state with-
out making it collapse to the computational basis.
Single-qubit gates (such as the X, Y, Z gates) act
on just one qubit and can be understood as ro-
tations around a given axis in the qubit’s Hilbert
space. Multi-qubit gates, on the other hand, may
act on several qubits, and can be viewed as rota-
tions in higher dimensional space. A particularly
relevant subset of these are constituted by Two-
qubit gates (like the CNOT, CZ gates), gates which
act on two qubits.

Measurements. These operations are needed in
order to gather information about a quantum state.
However, unlike quantum gates, this operation is
non-reversible, since the quantum state, and there-
fore the encoded information, is lost upon execu-
tion. Measurement makes the quantum state col-
lapses into one of the basis states.

Quantum algorithms are commonly described as
quantum circuits, representing qubits as horizontal
lines, and quantum operations as blocks on those
lines (exemplified in Fig. 1) and are hardware-
agnostic, i.e. they do not take into consideration
possible limitations present in the physical imple-
mentation of the qubits (quantum chip). Quan-
tum circuits can be divided in cycles(timesteps),
columns containing operations being performed in
parallel.

q0 H H X

q1 H Y X

q2 H H

Figure 1: Example of a quantum circuit. It contains 5 qubits
(q0 to q4), single-qubit gates (X, H) and two-qubit gates (S and
CNOT, the latter being identified by the ⊕ symbol). The me-
ter symbols on the far right represent measurements. The first
gates on each qubit (H) are examples of parallel gates, being
performed in the same cycle.

2.1. Physical Implementations
Unlike classical computers, whose implementation
mainly relies on silicon transistors, quantum com-
puters have several classes of candidate tech-
nologies under research, such as Superconducting
qubits[3], Semiconducting qubits[4]. Physical im-
plementation tend to exhibit three main limitations:

Qubits are fragile. Noise from the environment
can induce unwanted state transitions and phase
shifting. To be able to perform coherent computa-
tion on the qubits, they must be shielded against
this environmental noise. Furthermore, phenom-
ena such as relaxation limit the useful lifetime of a
qubit state in a fundamental way.

Quantum operations are faulty. Additionally,
the operations applied by quantum devices in their
qubits are not the same as the theoretical ones.
They are imperfect and may introduce errors in
the computation. The reliability of the gates can
be quantified using a concept call Fidelity : given
a quantum operation, or a set of quantum opera-
tions (such as a quantum circuit), fidelity is a mea-
sure of distance in the Hilbert Space, namely the
distance between the expected quantum state (as-
suming error-free computation) and the obtained
state. The fidelity of a gate set can be obtained via
tomographic techniques such as Gate Set Tomog-
raphy (GST)[5].

Qubit connectivity In order to perform multi-
qubit gates, the relevant qubits need to be phys-
ically connected in such a way that it is possible
for their quantum wave functions to interfere. For
example, in the case of superconducting qubits
this physical connection is often a photonic res-
onator. The most commonly implemented type of
multi-qubit gate is two-qubit gates. Each of these
gates requires a control operand qubit and a tar-
get operand qubit. Unlike the quantum circuit ab-
straction, quantum chips usually don’t have all-to-
all connectivity between qubits (a few exceptions
apply, such as Trapped Ions in certain conditions).

2

That is, the qubit connectivity graph is not a com-
plete graph, since such a feature poses great engi-
neering challenges.

2.2. Qubit Mapping: Problem statement
Quantum computers consist of different software
and hardware layers that bridge the gap between
quantum applications and quantum chips. In par-
ticular, a compiler is required to transform the
hardware-agnostic quantum algorithms into quan-
tum circuits runnable by the hardware. In this
context, the Qubit Mapping Problem arises: the
complete qubit connectivity graph assumed by
hardware-agnostic quantum circuits needs to be
emulated by the hardware’s non-complete connec-
tivity graph. In order to do this, one needs to
smartly map the virtual qubits to the physical qubits
at the beginning of the computation (known as Ini-
tial Placement), and possibly dynamically change
this mapping during the computation (known as
Qubit Routing). The Mapping Problem includes
these two procedures.

An example of this problem is portrayed in Fig. 2.
With the initial mapping {q0 : Q0, q1 : Q1, q2 : Q2}
the connectivity constraints for the first two two-
qubit gates were respected, but not for the third
one. In order to solve this, SWAP gates can be
introduced, exchanging the quantum states of its
operands, resulting in the mapping {q0 : Q0, q1 :
Q2, q2 : Q1}. This last mapping now makes q0 and
q2 adjacent on the device, enabling the execution
of the third two-qubit gate.

(a) Connectivity
graph.

q0

q1

q2

(b) Unrouted circuit.

q0

q1

q2

(c) Routed circuit.

Figure 2: Instance of the Qubit Mapping problem. In order to
make the circuit in Fig. 2(b) runnable in the presented connec-
tivity graph, a SWAP gate has to be added.

This mapping procedure results, specifically the
Qubit Routing procedure may however introduce
overhead in the computation, namely in the form
of extra gates and longer duration. Given that
qubits have a limited lifetime and quantum gates
are faulty, this overhead will decrease the compu-
tation’s success probability. It is therefore impor-

tant to reduce this overhead as much as possible,
resulting in the need for good mapping algorithms.

Additionally, the success probability of a quan-
tum circuit is not easily modelable, due to the com-
plex noise behaviour of quantum systems. As
such, the development of appropriate metrics to
guide the mapping algorithms is also necessary.

2.3. Mapping Algorithms/Metrics: State of the Art
Due to complexity aspects, finding an optimal solu-
tion to the qubit mapping problem quickly becomes
an impossible task with a growing number of qubits
and gates. For this reason, despite exact solvers
like SMT-based[6] having been proposed for very
small instances (. 5 qubits), scalable algorithms
are required.

In order to make the problem tractable, two ap-
proaches are usually taken: (i) approximate algo-
rithms are used; (ii) routing algorithms split the
problem into smaller, more digestible problems.
This is typically done at the quantum circuit level,
by slicing it into smaller sections, usually up to
50 cycles long, which are more easily optimizable.
Most algorithms then try to populate those slices
with SWAP gates, such that the connectivity con-
straints for all gates are respected.

Some approaches look for a good set of SWAPs
to be introduced in each slice via searches us-
ing dedicated algorithms[7, 8]. Other based use
heuristic search algorithms such as A*[9, 2] and
apply techniques such as bidirectional circuit map-
ping procedures[2], or use Spectral Graph Theory
in order to discover the good mappings for each
slice[10], and generate sets of SWAPs accordingly.
Finally, the usage of other frameworks such as
Temporal Planning and Constraint Programming
has also been proposed[11].

As metric, due to the difficulty in modelling
the Success Probability of circuits, the mentioned
works tend use circuit size (the circuit’s number of
gates), circuit depth (the number of cycles in a cir-
cuit) or the number of two-qubit gates, which all
negatively correlate with the success probability. A
reduced amount of works try instead to model the
success probability, whose proposals are formal-
ized in Nishio et al[12], with the Estimated Proba-
bility of Success (ESP):

ESP (C) =
∏
g∈C

(1− εg) =
∏
g∈C

(fg) (1)

where C is an arbitrary quantum circuit, g a gate,
εg the error rate associated with gate g, and fg
the corresponding fidelity. The fidelities can be ex-
tracted from the device’s calibration data.

3. Models
The Quantumsim simulator[13] was the backend
used in order to test the models. Due to the com-

3

plexity of performing a through GST procedure, the
fidelities for each gate were not averaged for all
states, but were instead extracted from the state
yielding the worst case scenario. Additionally, the
following assumptions were made:

• Qubit initializations are assumed to be perfect;

• Measurement operations are not included
since running the same circuit thousands of
times in order to obtain the output distribution
would be computationally expensive, due to
the fact that a simulator was used.

• CZ was the considered two-qubit gate when
developing the models, since the native two-
qubit gate that the backend supports. This
gate is operand-symmetric, unlike the CNOT,
for instance.

Four variations of the ESP model are proposed,
along with other analytical models that also make
use of the reliability data of devices such as gate
fidelities:

• ESP0: This is the variant implemented in
Nishio et al[12]. It considers errors prove-
nient solely from explicit single- and two-qubit
gates. As such, it does not take into account
the implicit idling gates – that is, the waiting
periods during which the qubits are not active
as a result of scheduling. Additionally, instead
of defining fidelities on a per-gate basis, a sin-
gle fidelity values is define for every gate within
each gate type (gate types referring to whether
each gate is a single- or two-qubit gate).

• ESPi: Similar to ESP0, but also takes into ac-
count the impact of the implicit idling gates.

• ESP0
sr: Similarly to ESP0, this variant does not

consider implicit idling gates. However, it ac-
counts for the information regarding the spe-
cific rotation of each gate, instead of solely
considering the gate type. Although mak-
ing no difference in the two-qubit gates case
(given that typically a lone two-qubit gate is im-
plemented per device), this approach assigns
a different fidelity for each single-qubit gate.

• ESPi
sr: Considers both the implicit idling

gates and the specific rotation of each gate.

3.1. Tracked Estimated Success Probability (TESP)
The ESP models take into account device specific
data such as gate fidelities, which was not the case
for the previous metrics (circuit depth, circuit size
and number of two qubit gates). Two additional
models, named TESP1 and TESP2, where TESP
stands for Tracked Estimated Success Probability,
were developed using a different perspective and

assumptions assumptions regarding how errors af-
fect and propagate through quantum circuits.

These models attempt to track reliability on a
per-qubit basis, until the end of the circuit where
these can be merged into a single success proba-
bility value. In these models, it is assumed that the
qubits are flawlessly prepared in the computational
basis (usually in the |0〉 state), i.e., their initial fi-
delity is 1. The decoupled, per-qubit reliability after
idling or a single-qubit gate is calculated for both
models through the following expressions:

TESP0
q = 1.0, (Initial prob. succ.) (2)

TESPt+1
q ,= TESPt

q,×fidle (Idling gates) (3)

TESPt+1
q = TESPt

q × f1qbg (Single-qubit g.) (4)

where TESPt
q represents the reliability of an arbi-

trary qubit q at timestep t and fidle, f1qbg repre-
sent the reliability of idle- and single-qubit gates,
respectively. As for the two-qubit gates, the rules
differ for each of the models:

TESP1t+1
qc = TESP1t

qc × f2qbg, (5)

TESP1t+1
qt = TESP1t

qt × f2qbg, (6)

TESP2t+1
qc = TESP2t

qc × TESP2t
qt × f2qbg (7)

TESP2t+1
qt = TESP2t

qc × TESP2t
qt × f2qbg (8)

where qc (qt) represents the control (target) qubit,
and f2qbg represents the reliability of a two-qubit
gate. The final step is merging of the per-qubit re-
liabilities into a final success probability to be used
as the models’ score:

TESPT =
∏
q

TESPT
q (9)

that is, the TESP value for a given circuit is the
product of the values for each qubit at the last
timestep (timestep T).

As can be seen from the expressions above,
the TESP models differ on the assumption used
to model the effect of two qubit gates. TESP1
assumes two-qubit gates to impact each of the
operands equally, i.e. they both receive an error
that is relative to the gate’s fidelity and their relia-
bility value. TESP2, on the other hand, attempts
to assume the worst possible case of the effect of
gates on qubits, making the resulting reliability of
each operand a result of not only its initial relia-
bility and the gate’s fidelity, but also of the other
operand’s reliability. This model, based on [14],
aims to reflect the worst case effect of gates (in-
cluding idling gates) on the reliability of the qubits.

In the TESP1 case, the expressions can be im-
plemented directly. In the TESP2 model case,
however, due to floating point precision issues
the displayed set of expressions had to be imple-
mented using an arbitrary precision type, instead

4

of a double floating point number, and in loga-
rithmic space, using the expression log(a × b) =
log(a) + log(b).

3.2. Deep Learning-based Models (NNESP)
Data-based models were an especially enticing
type of model to apply to this problem, due to
the complexity and variability of quantum devices:
noise models can vary wildly even between de-
vices from the same technology class. Data-based
models may have the ability to learn these be-
haviours on a per-device basis, saving develop-
ment time and costs. For the problem at hand, it
is possible to generate an arbitrary number of ran-
dom quantum circuits (input data) and run them in
the quantum device in question in order to retrieve
their probability of success (output data/labels),
making it possible to tackle this problem in a su-
pervised learning context. For further research
in Deep Learning (DL), [15] is a recommended
source.

Quantum circuits are essentially time-ordered
schedules where each operation is assigned to a
specific qubit on a specific timestamp, since the
order of the operations matters and cannot be ig-
nored, so quantum circuit structures can be seen
as sequential data. For each circuit we can encode
each cycle as a feature vector. Each feature vector
will serve as data timesteps to be fed to the neural
network.

Two deep learning model variants are consid-
ered: (i) NNESP, a variant where only gate types
and idles are considered, and not the specific rota-
tions they perform, similarly to the the ESPi model;
(ii) NNESPsr, a variant where, similarly to ESPi

sr,
idle gates and the specific gate rotations are con-
sidered. Due to the simulation speed constraints,
5-qubit quantum circuits for the test of all models.
Additionally, the two-qubit gate that is implemented
in our model is be the CZ (Controlled Z, also known
as Controlled Phase, or CPHASE), since it is the
primitive gate of the device that the backend at-
tempts to model. This allows for further simplifi-
cation, since CZ is operand-symmetric, i.e. no di-
rectionality (control, target) needs to be specified.

For the NNESP model, we implemented the en-
coding present in Tab. 1. This encoding describes
the operations each qubit undergoes in each of the
circuit’s cycles in an unequivocal manner. The way
two qubits are encoded, assigns each two-qubit
gate to its operands in an unambiguous manner.
As for the NNESPsr model, in order to distinguish
the multiple single-qubit gates, a different encod-
ing, displayed in Fig. 2, was defined. This con-
sidered each single-qubit gate in the finite set pro-
vided by the target backend as a separate class.

For both encodings, we forewent the usage of 0

Type of gate Feature label
Idle 1

Single-qubit 2
i-th Two-qubit gate (in cycle) i+ 2

Table 1: Implemented integer encoding for the NNESP model,
applied to the operations in each of the quantum circuit’s cycles
(timesteps). This is a suitable encoding in the case that CZ
(CPHASE) or other operand-symmetric gate is the lone native
two-qubit gate.

Type of gate Feature label
Idle 1

Single-qubit [2, 1 +Nsingle]
i-th Two-qubit gate (in cycle) i+ 1 +Nsingle

Table 2: Lossless integer encoding used for the NNESPsr

model. Nsingle represents the number of available single-qubit
gates.

as class to encode the gates, since it was reserved
for padding procedure of the sequential data. The
encoding used by the NNESPsr can be seen as
lossless, since no information regarding the circuit
is lost: the gates and respective are not ambigu-
ously defines, and the circuit’s structure (the spe-
cific distribution of the gates throughout the circuit)
is unequivocally defined via the feature vectors’ in-
dexes.

In order to be able to feed the encoded data to
a neural network, we needed to apply one further
transformation, namely encode each timestep in
a one-hot manner (instead of the previous integer
encoding).

3.2.1 Network Architecture

Recurrent Neural Networks (RNNs) are one of the
types of models suited to handle sequential data.
This type of neural networks allows the input of se-
quences of any size (number of timesteps), with-
out the need to change the networks architecture.
Furthermore, it also takes into account the order in
which the data is fed, whereas simple feed-forward
networks allow for no such time encoding. This fact
allows it to take into account the circuit’s structure
when making a prediction.

A simplified overview of the proposed architec-
ture is presented in Fig. 3. The architecture is
composed of five fundamental layer blocks:

1. Masking layer: Masking allows the network
to receive the padded data, while minimizing
the impact on the network’s performance.

2. Embedding layers: This block of layers re-
ceives the (one-hot) encoded data as input. It
allows the network to convert the used encod-
ing into a possibly more efficient one, which
the network learns.

3. Recurrent layers: This block of layers is re-
sponsible for handling the sequential nature

5

of the data. There are a few variants of
RNNs[16]. For this work Long Short-Term
Memories (LSTMs)[17] with trainable initial
hidden states[18], due to their expressiveness
compared to other models.

4. Hidden layers: These layers receive the hid-
den state given by the recurrent block and out-
puts another hidden state. While not strictly
necessary, this block may improve the net-
works prediction capability.

5. Output layer: Transforms the last hidden
state, given by the hidden layers, into our out-
put of interest, a prediction of the circuit’s suc-
cess probability. This layer is composed of a
single neuron. A sigmoid activation was cho-
sen in order to bound the output in the [0, 1]
interval. Binary Crossentropy (BCE) was used
as cost function to train the model.

Additionally, Batch Normalization layers[19] were
also added to the model, between blocks as shown
in Fig. 3, and between layers of the same block as
well (with the exception recurrent layer block), dur-
ing the training procedure, in order to improve the
training performance.

Figure 3: Final outline for the neural network architecture used
for both the NNESP and NNESPsr models. The neural network
receives each encoded circuit (xi) and outputs the predicted
probability of success (yi). (2) and (4) might be constituted
of several layers, depending on the specific hyperparameters
used. The dashed Batch Normalization (BN)[19] layers are a
training-specific layer meant to speed the training process up,
and are not present in the trained network during inference. BN
layers are also present between each layer of the layer blocks
(2) and (4), but not between the layer blocks in (3).

In order to train the network, we need a dataset
of circuits labelled with their expected probability
of success. Since we already have this label for
every circuit, and given that it is a single number
in the [0,1] interval, no transformations to the label
data are required.

4. Results & Discussion
Commonly, articles proposing metrics for the map-
ping problem tend to evaluate them in a algorithm-
dependent fashion. As mentioned, this can result

in an evaluation which can be biased by the ability
(or lack thereof) of the algorithm to navigate that
metric appropriately. Hence, this work proposes a
new method to evaluate a given metric.

One of the major roadblocks in accomplishing
an algorithm-independent evaluation of metrics is
that not all metrics express the same quantity, they
just output quantities which aim to correlate with
the success probability. In order to compare them,
a possible strategy is to look for monotonic corre-
lations between the each of the metrics and the
simulated success probability (ground truth). This
can be done by ranking the circuits using a point-
wise ranking method[20]: it is possible, for each
metric, to construct a circuit ranking via the score
attributed to each circuit. This then allows the com-
parison of the different metrics via the comparison
of the induced circuit rankings. The resulting rank-
ings can be compared with the ground truth rank-
ing, induced by the obtained success probability, in
order to extract a measure of correlation. Specif-
ically, the proposed metric is described by the fol-
lowing steps:

1. Score a set of test circuits (random circuits, for
example) using the various metrics to be com-
pared, including the simulated success proba-
bilities;

2. Rank the circuits according to the scores ob-
tained for each metric, the end result being a
ranking for each of the metrics;

3. Check which rankings are the closest to the
one induced by the simulated success prob-
abilities. This can be quantified using a mea-
sure of distance between rankings or rank cor-
relation.

In order to measure the similarity between rank-
ings, the Kendall τ correlation coefficient was used:

τ(A,B) = 1− 2DA,B

Np
= 1− 2DA,B(

N
2

) (10)

where DA,B is the number of discordant pairs
(pairs of elements appearing in opposite order in
each ranking), and Np =

(
N
2

)
is the total number

of pairs possible between any of the ranking’s el-
ements, with N being the number of elements in
each ranking. A Kendall coefficient of τ = 1 means
that two rankings are perfectly correlated (i.e. are
equal), τ = −1 represents perfectly negatively cor-
related circuits.

Using this described method, it is possible to
evaluate how good a metric is. Given a dataset
with several quantum circuits, rankings are gener-
ated by both the candidate metric and the simu-
lated success probability, with the latter acting as
ground truth. Afterwards, the Kendall the τ correla-
tion coefficient between the two rankings is calcu-
lated, and is used to estimate how good the can-

6

didate metric is. A value of τ = 1 would mean the
metric is perfect in the context of the given dataset.

In order to evaluate the models with the method
above, a random circuit generator was created in
order to generate probabilistic circuits datasets.
Four datasets – A1, A2, B1 and B2 – were con-
sidered, varying in the number of samples and
maximum circuit depth: the A1/B1 datasets con-
tain circuits with depths up to 50 cycles, while the
A2/B2 datasets contain circuits with depths up to
15 cycles. On the other hand, the B1/B2 datasets
have 7-10 times as many samples per dataset
when compared to their A1/A2 counterparts (which
contained approx. 30000/15000 samples, respec-
tively). These allow the evaluation of the mod-
els in different depth regimes, in order to verify
the impact on algorithms with varying circuit slic-
ing lengths. Additionally the different sizes allow
the inspection of the impact of dataset size on the
data-driven, deep learning models. Each of these
datasets were split into training/validation/testing
datasets with a 0.7/0.15/0.15 ratio, respectively.
The circuit datasets were simulated using the
Quantumsim simulator[13] using the DiCarlo Lab
superconducting chip’s parameter preset, and a
success probability was extracted for each circuit
using the Trace Distance between the distributions
resulting from the noisy and noiseless simulation of
the circuits.

4.1. Model Comparison
The ranking prediction accuracy of each of the pre-
sented models is displayed in Tab. 3.

The best faring analytical models were the vari-
ants of the Estimated Success Probability, pro-
posed by Nishio et al.[12]. These models were
able to beat the other experimental analytical mod-
els (TESP1, TESP2) by a reasonable margin.

It can be seen that, for the ESP implemen-
tations, taking the idling gates into consideration
did marginally improve the predictive power of the
model. However, taking the specific gates’ errors
into account, rather than a generalized per-gate-
type error did not yield improvements, actually re-
sulting in an accuracy reduction.

The deep learning models, based on supervised
neural networks, did indeed outperform the com-
peting analytical models in all cases. The rela-
tive accuracy improvements, as compared to the
best analytical model (ESPi), ranged from mini-
mal improvements of around 2%-5% when consid-
ering only gate types, to significant improvements
of 10%-18% when distinguishing between single-
qubit gates. Regarding the training process, it can
be seen that, while not much improvement resulted
from a larger dataset in the gate type-only case, it
did make a difference in the full-information case.

4.2. Absolute Circuit Scoring
Unlike the previous models, the developed deep
learning models are not only able to correlate with
the circuits’ success probabilities, but are actually
able to be good estimators of the absolute values
of the success probabilities. As such they may be-
come useful for new use cases which actually re-
quire this absolute value prediction.

Fig. 4 is presented comparing, for a sample
circuits subset of the B1 dataset, the real suc-
cess probabilities and those predicted by the best
analytical and deep learning models (ESPi

sr and
NNESPsr, respectively). The B1 dataset was used
due to its higher number of samples, allowing the
data-driven NNESPsr model to achieve the best
possible accuracy, and due to its higher maximum
circuit depth, allowing its circuits to display a wider
range of success probabilities. Tab. 4 quantizes
the regression quality for the two models.

0.900.920.940.960.981.00
Simulated Success Probability

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

M
od

el
 p

re
di

ct
io

n

ESPi

NNESPsr

y = x

Figure 4: Demonstration of the deep learning models’ capabil-
ity to mimic the real success probability values. We compare
the predictions from the ESPsr and ESPi models in the con-
text of the B1 dataset. The 25%, 50%, 75% and 100% per-
centile bands are displayed. The minimum displayed real suc-
cess probability value is ≈ 0.88, due to the dataset’s maximum
depth of 50 cycles, which are insufficient for the success prob-
ability to drop further than this.

It can be see that the NNESPsr model is a con-
siderably better estimator for the success probabil-
ity, yielding very close values in most of the consid-
ered domain. Comparatively, the ESP models do
not output a similar value, and tends to further di-
verge as the real success probability (as computed
by the Quantumsim simulator[13]) drops, while pre-
senting a large dispersion of predictions. As can
be seen in Tab. 4, the MAE tells us that the ESPsr

model’s error is on average more than one order of
magnitude smaller than the ESPi’s error. Further-
more, the absolute value of the average difference
is more than three orders of magnitude higher in
the ESPi case, expressing a much larger bias that
its counterpart. The fact that it is negative means
that ESPi tends to underestimate the real success
probability value, a fact that is not surprising due

7

Kendall τ Correlation Improvement relative to ESP0

A1 A2 B1 B2 A1 A2 B1 B2

M
et

ric
Circ. size 0.537 0.446 0.541 0.457 0.75 0.78 0.76 0.78

Circ. depth 0.727 0.595 0.725 0.605 1.02 1.04 1.01 1.04
N2qbg 0.634 0.313 0.637 0.324 0.88 0.55 0.89 0.55

TESP1 0.630 0.409 0.471 0.416 0.88 0.71 0.66 0.71
TESP2 0.519 0.426 0.522 0.433 0.72 0.74 0.73 0.74

ESP0 0.716 0.573 0.714 0.584 1.00 1.00 1.00 1.00
ESPi 0.719 0.582 0.717 0.591 1.00 1.02 1.00 1.01

ESP0
sr 0.709 0.572 0.707 0.576 0.99 1.00 0.99 0.99

ESPi
sr 0.697 0.522 0.695 0.525 0.97 0.91 0.97 0.90

NNESP 0.731 0.602 0.731 0.611 1.02 1.05 1.02 1.05
NNESPsr 0.783 0.657 0.817 0.696 1.10 1.13 1.14 1.18

Table 3: Ability of each model to correctly rank each circuit datasets. The Kendall τ correlation between each model and the
ground truth is presented for every model-dataset combination (for all models: A1, A2, B1, B2). N2qbg is the identifier for the
two-qubit gate number metric. Additionally the normalized correlations relative to the ESP0 model (Nishio et al.[12]) are also
displayed. In the case of the NN-based models, the displayed correlation values were obtained after τ -driven hyperparameter
optimization (number of layers of each type and neurons per layer). The boxed values represent the best correlation obtained
within each dataset.

Model MAE Avg. diff. (10−2) R2

ESPi 0.0638 -5.97 -45
NNESPsr 0.0025 0.00691 0.85

Table 4: Regression quality of the best analytical (ESPi) and
the best deep learning (ESPsr) models, for the B1 dataset. Dis-
played are the Mean Absolute Error (MAE), the Average Differ-
ence, and R2.

to the simple recurrent gate fidelity multiplication
method it relies on, which tends to quickly con-
verge to zero. Finally, the R2 tells us that how well
the models fit the data compared to the constant
model yielding the average real success probabil-
ity for every circuit. The calculated values reinforce
the suspicion of ESPsr being a good estimator of
the success probability. On the other hand, ESPi’s
negative R2 value reflects the fact that it actually
performed worse as a estimator than the constant
model. The estimation capacity of the deep learn-
ing models didn’t seem to hold for circuits longer
than 50 cycles, however: the network appears to
hit a plateau and attribute a success probability of
≈ 0.88 to such circuits. This is likely due to the fact
it was not trained on circuits with success probabil-
ities lower than this.

Additionally, Fig. 4 depicts the fact that the
dataset’s samples may not be regularly distributed
across the presented success probability interval,
which might contribute to model bias. We suggest,
for future works, researching how to best construct
datasets in order to make the most out of data-
driven models.

These novel deep learning models are, as far as
the author knows, the first capable of reasonably
estimating the success probability of a short circuit
in a single-shot evaluation, without requiring com-
plex and costly simulations, or running the circuit

in a quantum device a high number of times – usu-
ally in the order of thousands, to reduce statistical
errors.

5. Conclusions
A novel method was proposed in order to evaluate
different metrics, independently of a mapper algo-
rithm: one that uses each model to score a set of
circuits, and rank them accordingly; afterwards, a
ranking correlation method (such as the Kendall
τ correlation factor) can be used to calculate the
correlation with the true circuit ordering (obtained
via simulation). This new method allowed the un-
biased comparison of several existing models, as
well as the newly developed ones.

New models, both of analytical an deep learning
nature were also proposed and evaluated. It was
found that, within the analytical models, the ESP-
based models were the best performing. Among
these ESP-based models, the best results were
obtained by considering only the gate-type of each
gate (i.e. discarding the information regarding
the specific rotation) and considering implicit idling
gates. All the deep learning-based models, on the
hand, performed consistently better than any of the
analytical models, accuracy-wise. In particular, the
NNESPsr model, discarding no circuit information,
yielded improvements relative to the best analytical
model (ESPi) in the 10%-18% range.

Besides displaying the best accuracy (although
at the cost of higher evaluation speed), the pro-
posed deep learning models also exhibited a pre-
viously unseen perk: the capacity to accurately es-
timate the success probability of shallow quantum
circuits. This may allow new use cases where such
quantities are of interest (without the need to sim-
ulate/run the circuits in quantum devices and per-
form sampling). As an added advantage, the deep

8

learning model does not need parameters such as
gate fidelities and coherence times to be extracted
from the device.

Additionally, an important advantage of data-
driven models such as those based on deep learn-
ing, is the ability to take into to account the specific
noise dynamics of different devices, which might
otherwise require the development of different ana-
lytical models, as well as the ability to capture hard
to model noisy behaviours such as leakage[21]
and crosstalk [22].

5.1. Future Work
Deep learning based-models still face a couple of
hurdles, namely the qubit scalability problem: the
current model requires a growing number of pa-
rameters, as the number of qubits and the connec-
tions between them grows, and more input nodes
become therefore needed. One possible solution
may lie in the usage of Graph Neural Networks
(GNNs)[23], which take graphs as input (instead of
vectors): this can prove beneficial since graphs are
the natural way to represent a set of interactions
between a number of qubits and other data of com-
binatorial nature. Additionally, convolutional ap-
proaches, such as the ones that constitute the ba-
sis of Convolutional Neural Networks (CNNs)[24],
may improve learning by sharing the learned im-
pact of the different gates among qubits.

Another scalability-related avenue is scalability
with circuit depth, providing the ability for circuits
longer than 50 cycles to be used during training
and evaluation time. A way to tackle this may lie
in the use of newer sequential models, such as
Transformers or Reformers[25], which tend to solve
similar sequence length-related issues present in
RNNs, and allow the fidelity of whole quantum pro-
grams to be predicted. Such models may present
themselves as new ways to benchmark quantum
devices.

It is also of interest to develop a good method
to encode arbitrary gates (and not just a finite set).
One possible way to solve this might be to encode
single qubit gates as a axis-angle pair of parame-
ters: for example, encoding categorically encoding
the axis (as one of 3 axis classes), while encoding
the angle as a fractional, normalized number.

A third goal that is ultimately necessary to indi-
cate overall feasibility of deep learning models, is to
study of the behaviour of the presented deep learn-
ing techniques in a real-world setting, i.e. a real
quantum device, instead of just relying on simula-
tions. Such would require the addition of measure-
ment operations to the proposed models, which
should be straightforward since they can be en-
coded in a way similar to single qubit gates.

Additionally, the dataset generation methods for

the deep learning models can itself be subject of
study, since the quality of the dataset may impact
the ability of data-driven models to be accurate and
extrapolate.

Other avenues of research are also possible
within the machine learning realm, both inside and
outside the deep learning framework. On one
hand, inside the deep learning framework, other
Machine-Learned Ranking approaches[20] can be
pursued, other than the current Pointwise ap-
proach, namely the Pairwise (learning to rank, by
learning to perform binary comparisons between
circuits) and Listwise (learning to rank by consid-
ering the entire set of circuits) approaches[20].
On the other hand, outside the deep learning
framework, other noteworthy methods should be
mentioned. Examples of such methods are de-
cision tree based algorithms[26] (such as Ran-
dom Forests and Gradient Boosting) and Genetic
Programming[27]. Although it may be argued that
these methods have less potential for accuracy that
deep learning[28], the increased explainability they
offer may make for easier scalability. Genetic pro-
gramming, in particular, may be especially inter-
esting, since it is a data-driven method that can
find analytical expressions that model a specific
problem, by combining different expressions using
genetics-based processes such as mutations and
crossovers.

Tackling the presented scalability issues, while
still achieving high accuracy and reasonable train-
ing procedures, could yield a model easily portable
to different quantum computing technologies, while
empowering mapping algorithms with the ability to
make better choices. Achieving such improved
mapping procedures can improve the reliability
NISQ devices, boosting their capability to solve
real world problems in near future.

References
[1] D. Gottesman, “An introduction to quantum er-

ror correction and fault-tolerant quantum com-
putation,” 2010, pp. 13–58.

[2] G. Li, Y. Ding, and Y. Xie, “Tackling the Qubit
Mapping Problem for NISQ-Era Quantum De-
vices,” in International Conference on Archi-
tectural Support for Programming Languages
and Operating Systems - ASPLOS, 2019, pp.
1001–1014.

[3] M. Kjaergaard, M. E. Schwartz, J. Braumüller,
P. Krantz, J. I.-J. Wang, S. Gustavsson, and
W. D. Oliver, “Superconducting Qubits: Cur-
rent State of Play,” Tech. Rep., 2019.

[4] X. Zhang, H. O. Li, G. Cao, M. Xiao, G. C.
Guo, and G. P. Guo, “Semiconductor quantum
computation,” pp. 32–54, 2019.

[5] D. Greenbaum, “Introduction to Quantum

9

Gate Set Tomography,” 2015. [Online]. Avail-
able: http://arxiv.org/abs/1509.02921

[6] P. Murali, A. Javadi-Abhari, F. T. Chong, and
M. Martonosi, “Formal constraint-based com-
pilation for noisy intermediate-scale quan-
tum systems,” Microprocessors and Microsys-
tems, vol. 66, pp. 102–112, 2019.

[7] K. Bertels, C. G. Almudever, L. Lao, I. Ashraf,
B. van Wee, N. Khammassi, and J. van
Someren, “Mapping of lattice surgery-based
quantum circuits on surface code architec-
tures,” Quantum Science and Technology,
vol. 4, no. 1, p. 015005, 2018.

[8] S. G. V. Wee, “Mapping of quantum algo-
rithms on a quantum chip,” 2017.

[9] A. Zulehner, A. Paler, and R. Wille,
“An Efficient Methodology for Mapping
Quantum Circuits to the IBM QX Ar-
chitectures,” dec 2017. [Online]. Available:
http://arxiv.org/abs/1712.04722

[10] J. X. Lin, E. R. Anschuetz, and
A. W. Harrow, “Using Spectral Graph
Theory to Map Qubits onto Connectivity-
Limited Devices,” 2019. [Online]. Available:
http://arxiv.org/abs/1910.11489

[11] D. Venturelli, M. Do, J. Frank, E. Rieffel,
K. E. C Booth, T. Nguyen, P. Narayan, and
S. Nanda, “Quantum Circuit Compilation: An
Emerging Application for Automated Reason-
ing,” Tech. Rep., 2018. [Online]. Available:
https://openreview.net/pdf?id=S1eEBO3nFE

[12] S. Nishio, Y. Pan, T. Satoh, H. Amano,
and R. Van Meter, “Extracting Success
from IBM’s 20-Qubit Machines Using Error-
Aware Compilation,” 2019. [Online]. Available:
http://arxiv.org/abs/1903.10963

[13] T. E. O’Brien, B. Tarasinski, and L. Di-
Carlo, “Density-matrix simulation of small
surface codes under current and projected
experimental noise,” pp. 1–9, 2017. [Online].
Available: http://arxiv.org/abs/1703.04136

[14] A. Van Rynbach, A. Muhammad, A. C. Mehta,
J. Hussmann, and J. Kim, “A Quantum
Performance Simulator based on fidelity and
fault-path counting,” p. 13, 2012. [Online].
Available: http://arxiv.org/abs/1212.0845

[15] I. Goodfellow, Y. Bengio, and A. Courville,
Deep Learning. The MIT Press, 2016.

[16] Y. Yu, X. Si, C. Hu, and J. Zhang, “A review
of recurrent neural networks: Lstm cells and
network architectures,” pp. 1235–1270, 2019.

[17] K. Greff, R. K. Srivastava, J. Koutnik, B. R.
Steunebrink, and J. Schmidhuber, “LSTM: A
Search Space Odyssey,” IEEE Transactions
on Neural Networks and Learning Systems,
vol. 28, no. 10, pp. 2222–2232, 2017.

[18] F. A. Gers, N. N. Schraudolph, and J. Schmid-
huber, “Learning precise timing with LSTM
recurrent networks,” Journal of Machine
Learning Research, vol. 3, no. 1, pp. 115–
143, 2003. [Online]. Available: www.idsia.ch

[19] S. Ioffe and C. Szegedy, “Batch normal-
ization: Accelerating deep network training
by reducing internal covariate shift,” in
32nd International Conference on Machine
Learning, ICML 2015, vol. 1. Interna-
tional Machine Learning Society (IMLS),
feb 2015, pp. 448–456. [Online]. Available:
https://arxiv.org/abs/1502.03167v3

[20] T. Y. Liu, “Learning to rank for Infor-
mation Retrieval,” Foundations and Trends
in Information Retrieval, vol. 3, no. 3,
pp. 225–231, 2009. [Online]. Available:
http://dx.doi.org/10.1561/1500000016

[21] G. Graziano, “Quantum information leak-
age,” Nature Reviews Chemistry, vol. 4,
no. 4, p. 170, apr 2020. [Online]. Available:
https://doi.org/10.1038/s41570-020-0178-z

[22] M. Sarovar, T. Proctor, K. Rudinger, K. Young,
E. Nielsen, and R. Blume-Kohout, “Detecting
crosstalk errors in quantum information pro-
cessors,” Quantum, vol. 4, 2020.

[23] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang,
and P. S. Yu, “A Comprehensive Survey on
Graph Neural Networks,” IEEE Transactions
on Neural Networks and Learning Systems,
pp. 1–21, 2020.

[24] A. Ajit, K. Acharya, and A. Samanta, “A Re-
view of Convolutional Neural Networks,” in In-
ternational Conference on Emerging Trends in
Information Technology and Engineering, ic-
ETITE 2020. Institute of Electrical and Elec-
tronics Engineers Inc., feb 2020.

[25] N. Kitaev, Ł. Kaiser, and A. Lev-
skaya, “Reformer: The Efficient Trans-
former,” jan 2020. [Online]. Available:
http://arxiv.org/abs/2001.04451

[26] W.-Y. Loh, “Classification and Regression
Trees,” Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, vol. 1, pp.
14–23, 2011.

[27] M. T. Ahvanooey, Q. Li, M. Wu, and S. Wang,
“A survey of genetic programming and its ap-
plications,” KSII Transactions on Internet and
Information Systems, vol. 13, no. 4, pp. 1765–
1794, apr 2019.

[28] T. J. Sejnowski, “The unreasonable
effectiveness of deep learning in arti-
ficial intelligence,” Proceedings of the
National Academy of Sciences, p.
201907373, jan 2020. [Online]. Available:
www.pnas.org/cgi/doi/10.1073/pnas.1907373117

10

